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The Hamilton-Jacobi Theory of Dynamics

by

L. Nordheim, Gottingen and
E. Fues, Stuttgart

1. General statement of the question. 1In the previous

chapter the principles of mechanics in their most general form
as well as the equations of motion which arise irom them were
stated and discussed. Following this the next natural question
is, how do we go about the actual integration of these equations
and if in particular we cannot draw important conclusions from
their character as differential equations of mechanics. This is
indeed to a large degree the case, especially with problems for
which a kinetic potential exists (cf. Chap. 2, No. 10).

For this mainly the theory of iutegration was developed
systematicly by Jacobil) and Hamilton2). It is of very great
importance on the one hand for celestial mechanics and on the
other for tne atom; this is becais:. for both, at least as long
as one disregards the periods viz. reaction forces of radiation,
there are neither bonds nor non-conservative forces.

Its development will take placr in three steps. First,

we will attempt to get the simpiest possible form for the

differential equations. This leads us to the canonical equations

Dg. c. Jacobi, Vorlesungen .ber Dynamik, Werke Supplement-
band, 2. Aufl., Berlin 1888.

2)W. A. Hamilton, Brit. Ass. Rep. 1834, S. 513; Phil. Trans.
1835, S. 95.
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of mechanics. Second, we can question the general laws of trans-
formations ot these differential equations in which they retain
their form. This leads us to the canonical transformations and
the theory of their most important invariants. Third, we will
present the actual theory of integration of the canonical
equation systems which consists of the setting up and integration
of the Ham‘ltonian partial differential equation.

The limitation already introduced above to systems with a
kinetic potential is the same which makes the Hamiltonian principle
an actual variation principle. Therefore, the application ot the
methods of the calculus of variations leads us to expect a very
great facilitation, and also the deeper significance of the
singular Hamilton-Jacobi integration process is only disclosed by
it. We will return to this at the conclusion.l)

As an up-to-date presentation we mention above all the book
by whittaker.2) The first systematic development which was also

of fundamental significance to the point was given by Jacobi3)

1)The following presentations are similar in many respects,
especially in the application of the calculus of vaciation, to
those which one of us heard (Norcheim) in lectures by Hilbert.
Also here we would like to thank sincerely Mr. (Privy Councillor)
Hilbert for permission to use them.

2)g. T. A. Whittaker, Analytical Dynamics, 2. Aufl.,
Cambridge 1917, Deutsche Ubersetzung von F. u. K. Mittelsten-
Scheid, Berlin: Julius Springer 1924.

3)Siehe Anm. 1 von S. 91.



in his famous lecture on dynamics. Many important relationships,
especially regarding the theory of canonical transformations,
are contained in the investigations of Lie.l)

Our startir.g pcint is the Hamiltonian principle. We assume
therefore, that a kinetic potential (cf. Chap. 2, No 10) exiscs,
which is a function of the coordinates and velocities L (qy. dk’ t),
and the movements of the system shrld satisfy the Hamiltonian
principle (see Chap. 2, No. 22).

/{'L(q,,, &, t)dt = Extremum (1)
4

According to the caleulus of variations, they are stated as

d @@Ly L _ . k=1,2...1) 2
Zi(a—qk) Oqx 0 ( ()

L thereby can be of the most general form, and can therefore
contain even the time t. Likewise forces are also admitted
which depend on the velocities in the sense of Chap. 2, No. 10.
For a single electron, for example, the Lagrange function in the
most general case, that is, with regard to the special theory of
relativity and under the influence of any given number of electri-
cal and magnetic fields, which arise from the potentials
and A, is TTot) e

’ L=moc’(1——V1—~ci)+EQIb—up. (3)
The cxpression to the left in (2) one calls the variation

derivative of L according to q,. For the sake of brevity we

1)S. Lie, Theorie der Transformatio.:sgruppen, Bd. I-III,
Leipzigz 1888-1390, insbesondere Bd. II.
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will designate it with the abbreviation [L]qk:
- d (ﬂL\ L (4)

T T g AN gy - gt

2. Reduction of the problem to the canonical form. W2 now

take the first step and attempt to find a new simpler form for

the variation problem. In formula (1) of No. 1, L is a function
of qy, qy and possibly even t. Obviously we would get a simpler
problem in a certain respect if we could eliminate the derivatives

qy as new variables to vary independently by placing

. h
moRE (1)
The variation problem is then expressed
ts
L(gs, k¢, t)dt = Extremum,
Z (2)

whereby now, to be sure, the equations (1) are tc be added as
side conditions.

The latter can be treated in the known manner with the
Lagrange factor methodl). We multiply them with the still-to-be-
determined factors and solve the absolute variations problem

now with 3f unknowns: ,

L > J - —3
i./ { +%;~k {0 kg)} dt = Extremum. (3)
Here one can determine the from the requirement that the

1n the present problem naturally also the neighboring
curves should satisfy the-'side conditions. One has to make use
of them even before the variation in contrast to the usual
non-holonomis side conditions, in which the neighboring curves
do not satisfy the side conditions as in Chapter 2, Ne. 20 and
27.




variation derivatives according to the new variable k1
[L + A (qe — kl:)] =0
I3 k&
must disappear. Since within the brackets the k, does not occur,

IL oL
the equacions can be reduced to g5 —4=0 A= e

Thus the A k are determined. One can introduce their wvalue and

obtain a free variation problem with 2f unknown functions

II (9es ki, 0) +2— (7 — k,‘)} dt = Extremum.

(4)
Hereby the extremum is to be selected among all functions q;(t)
and ki (t) whereby, however, no marginal conditions may be ascribed
to the ky since their derivatives do not enter into the integral
and also (1) of No. 2 contains no conditions for the qi. That the
requirement (4) is actually fully equivalent to (1) ot No. 1 can
be seen from the following. The conditions for the desired

functions are [L '*"an/f k“)J -0,
L

{L+\--—<qk——kkj =t = =k =0

—c‘k

Here the second line says that, aside from the singular cases
2,/ kk 0 to be excluded here, qy = k. If we insert this
into the first line then we return to the original form (1) of

No. 2.
This proof of equality is necessary since in and of itself
(3) viz (4) does not at all completely agree with (1) of No. 1.

This is because the extremum in (1) of No. 1 is to be sought among
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all values which arise by inserting all arbitrary functions
q(t) in L. The q thereby are naturally included. In {3}

on the other hand, the k) are still to be taken as arbitrary
functions. Correspondingly the region in which the extremum
must be sought is a much broader one. Actually it can be shown
as that in case the actual path curve makes the integral (1) of
No. 1 atrue minimum, this with (4) can not be the case, but that
then this integral assumes a saddle value in such a way tha: it,
with at first fixed but arbitrarily chosen qy(t), is to be made
a maximum with respect to ki (t) and only after condition the
qr(t) are to be chosen so that then the integral becomes a minimum
with respect to its variations. This has been shown by Hilbert
in his lectures.

For the purposes of mechanics, however, the character of
the extremum, that is, whether maximum, minimum or (as here)
saddle value, is of no consequence. It is only important that
the variation derivatives for the various forms of the variation
problem become identical and therewith the curves, which make
the integral an extreme-value, that is, the desired path curves.
Therefore we will not go into thir matter any further here, but
will only mention that for sutficiently small regions the

Hamiltonian integral (2) for the true motion becomes an actual

micimuml) .

1)Siehe z. B. das in Anm. 1 von S. 92 zitierte Buch von
Whittaker, Analytische Dynamik, S. 265.
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Form (4) will be dealt with later. Here we will first go
one step further by introducing in place of ki as a new unknown

the generalized momentum (see Chap. 2, No. 11).

OL(q:, k 9L (q.. g
po= e OL U 40 (5)

By means of (5), the k, become functions of py, Ay and possibly

4
of t, and (4) receives the form ]{%7;5,,@,,—11(?,,,@,!}}1!:Extremum.
i

{6)
whereby H=_[ +‘-;Yk’=z/i I +k2'é‘§q[";

(7)
signifies the so-called Hamiltonian function. Thereby in H the
kk are to be thought of as expressions of py, qy, t. Eguation
(6) has now the simplest form which an absolute variation problem
can assume in that only the derivatives of the one series of
variables occur and there occur only linearly and multiplied witn
the other variables themselves. It is therefore called canonical.
Correspondingly one calls the A and p; also canonical variables
and especially the p, the canonically conjugated momenta to the
q- A proof of equivalency of (4) with (6) is obtained by a
direct transformation from (4).

From the variables Py» 9x One moreover returns easily to the
variables k, (viz qy), qx. For this we differentiate H partially

according to Pk

oH _ 0 _ V0L ok, ok, 8a)
3;-. 37.(—-1.'{"2"!?!)-- nm"“Z‘a’Eh'f‘kg-h. (
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From this we further get

-+ Sun=mie St |
- k *

oH
L=-—H+2§;‘pb ’
* (8b)

Therefore the change from L to H is of the same form as the
reverse from H to L. One designates it as Legendre transformation
which also plays an important role in many other areas cf mathe-
matics and physics. It produces, for example, in thermodynamics
the transformation between the various thermodynamic potentials.

In the new variables the differential equation of the
variation problem, that is the equations of motion of the system,
are especially simple form. They are at first [‘\':,,,,-,‘_HL.=0,

[;P:‘h - H},,,= 0

and can be reduced, as one can see, to

dgy _ OH

de " op’

dpr _ _OH

a T e (9)

These are the so-called canonical equations of mechanics which
are the starting point for most of the studies of higher dynamics.
In place of the system of 2. order of the f Lagrange differential
equations (2) of No. 1 for the 9y > they form a system of 1. order
of 2f differential equations for the qy and py. They are
according to their derivation completely equivalent to the
former.

One can perform the transformation of the differential

equations of a mechgnical system to the canonical form even if



all side conditions are not eliminated but are carried atong

separately. If these side conditions are ¢, 0 =0,

then the corresponding Hamilton®an equations are

. _("H N
q‘—ap‘ 1

{
Fr= — 0H+\ﬁ op, J

9 '6g. (10)

I1f the conditions are of the non-holonomic form

Za,.dq,, =0,
r

then in place of the second row in (10) we place
b= — g + S, (10a)
However, the use nf these equations gives us no advantage since
their symmetry has been lostl),
We now ask concerning the mechanical significance of quantity
H. If, as is usuelly the case, the kinetic energy 1 is a
hcmogeneous quadratic function of ék’ then according to the Euler
law for homogeneous functions the following is true:
7= 2 1)
And then, since L = T-U according to our assumptions:
2?n§n= ‘n. ‘@ = 2 - =2T,
in case the potential energy V does not depend on the velocities.

Accordingly then under the given limitations

1)giehe hierzu T. Péschl, C. R. Bd. 156, S. 1829. 1913; S.
Dautheville, S. M. T. Bull., Bd. 37, S. 120. 3909.
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H=—L+;m%:ﬂTTC$3TﬂTTU (12)
is the total energy of the system.

The recipe for setting up the canonical equations is therefore
as simple as can be imagined. One needs to know only the energy
as a function of the coordinates and momenta in order to be able
to write them down immediately. Acording to (12) it should be
noted, however, that this simple mechanical meaning of E is only
valid under the conditions of (11). For other cases, for example,
with reference to a rotating coordinate system, H is no longer
the energy, and one has to go back to equation (7) to determine
the Hamiltonian functionl)

A first integral of the motion equations is obtained
immediately, if the Hamiltonian function does not explicitely
contain the time. If one multiplies the canonical equatiouns

(9) with qp or, as the case might be, with py, then from them

SH | iH . .. -
‘;—7= %I—;;Pk"{' 13(-1—;‘11: =qu1’t —Zﬂ‘h=°- (13)
k k k k
H = const. = W
is therefore an integral of the canonical equations. In the

just mentioned simplest case, this is nothing but conservation

of energy.

1)About the Hamiltonian function and integration theory
in relativistic mechanics see Chapter 10 of the volume of
Handbook. Also see J. Frenkel, Lebrbuch der Elektrodynamik,
Chapter 10, pp. 330 f<. Berlin 1926.
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1f, further, the Hamiltonian function does not explicitly

contain a ccordinate, i.e. qq > then it follows immediately

A== =0, p=komst (14)
We therefore again have an integral of the canonical equations.
In the same manner, for example, the conservation law p = const.
follows in the case of the Kepler motion, whose Hamiltonian
function is written in plane polar coordinates r,

H=o(f+ut)— 2. (15)
Certainly in connection with this example, in which has the

meaning of the azimuth in the path plane, one calls such co-

ordinates, of which the Hamiltonian function is independent, cyclic

variables. This case always occurs when the energy of the random
value of one coordinate is not affected, therefore, fo>r example,
is not changed when the entire system is translated or rotated.
One obtains thus for free systems, for example, the center of
gravity and surfaces. We will return to this in No. 9 and 1l1.

(Cf£. also No. 11 of the previous Chapter 2).

3. Canonical Transformations. We now turn to our second

question and investigate what kinds of transformations of the
variables can be made while preserving the canonical form of the
motion equations.

We therefore look for substitutions

9!*9:(05- P.o ')n (l)
ti= 250 P, ¥),
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which changes the variation problem (6), No. 2 into an equivalent

one with a new Hamiltonian function K

4
f{;Pka — K (P4, @k, 1)}(11 = Extremum (2)

4L

Thereby it is not required that the two integrals themselves
become identical but only that they assume their extremum at the
same time; that means, when the integral (6) of No. 2 for the
functions qk(t), pk(t) assumes its extreme-value, then the integral
(2) for those functions Qk(t), Py (t) should do it also; these
functions result from q, and Pk by means of the substitution
inverse to (1).

This is then and only then guaranteed when the two integrands
differ only by the complete derivative of an otherwise arbitrary
function (Qk> Py> t) according to t. For such a one the
integral is independent of the path and produces in all cases
with fixed integration limits a constant amount, which influences
the occurance of an extremum in no way. The condition, which
Qg and P, must fulfill, is stated thusly

;Pték—H=EPkQA—K'i' %?(P»Q-‘)- (3)

This condition must naturally be true also for all non-
mechanicel, varied integration paths in the p, q, t space.
Since now between the q) no kinematic conditions are supposed
to exist, then one can write more clearly for (3)
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which condition must be fullfilled for any arbitrary choice of
differentials Aqk, AQk, At. Here A4> is explained by
s i a0+ X an 58 a
in which fAPk is dlready defered by Aqk, AQk’ A t since
(with a definite \t) obviously between the 4f differentials
Aqk, i\pk AQk’ ]\ Py always the 2f relationships
g Sin g+ 3 if aris Geat
‘ "”* - 4Qi+ ij; AP, H”*A:

exist. The fundamental determinant of transformation (1) we

oy =
naturally assume here to be # 0.
In order to obtain from (4) real conditions for the trans-
formation equations (1), we introduce in q:\ in place of Py the
qy 10 that we think of the relationship

K(PI,Ql,t)

according to Pk as beirg solved for:
Pe - ( 1, Q1 t)
We assume that this solution is p0831b1e CP thereby changes into
a function V(g , Q. t). Then out of (4) we get
;,,3% — H(pr, g, 1) 4t =§P.AQ.‘— K(Py, Qs 04t + 4V (g, u, 9)
with mit av =Z%;Aq, +Z%AQ,+ o 4. (sa)
So that equation (4a) is satisfied identically, the factors of

Aqk, AQk, A t must be equal on both sides:

=g,
6V
"*"r' : (5)

K=H+o—‘—.
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Since one can caléulate from the equations of the second line
in general the q from those of the first and then the py as
functions of Py, Qy, the equations (5) with an arbitrary choce of
function V(qk’ Qk’ t) always produce a canonical transformation,
whereby the new Hamiltonian function K is given by the third line.
The function V is called the generator of the .ransformation.

The new canonical transformations are:

dP, _ 7K dQ. _ K

e T T dt = (P’ K:H+%?
It especially V does not contain the time explicitly, then simply
K = H.

It is very remarkable that the canonical transformations are
independent of the special mechanical problems. The property of
a transformation to be canonical does not depend, therefore, at
all on the nature of the considered problem, but is peculiar to
it itself.

We have just favoured the variables qp, Q) in the generator
V. We could just as well have taken any f of the variables g,
py and f of the Q, Py. The general result can then be expressedl):
If V(x, Xy, t) is an arbitrary function of 2f + 1 variables Xy

Xk, t whereby the Xy (K= 1, . . . . f) are any of the variables

dis Pk»> the Xy are any of the Qgk, Py, then

1)Siehe M. Born, Vorlesungen uber Atommechanik, S. 35.
Bzrlin 1925; vgl. auBerdem die Einzelausfihrungen im folgenden
Kap. &4, Ziff. 3, ds. Bd. des Handbuchs.



- 15 -

2%
)’b=:i:2h,
v
Y"=:F(Xk’
K=H+V (6)

I

is a canonical transformation. Thereby yj, is conjugated with xy,
Yy with X; and the upper symbol is valid when differentiating
according to the coordinates, the lower when differentiating
according to momentum. Very often the canonical transformation

is used the form

V=V(qky Pi, t) y
ov
pe="tag
ov
O =+gp, (5a)

Each one of the transformations of the position coordinates
above K = ( )
9« = 1< (@t

which is designated as a point transformation, since it changes
each point in the locus of gy into such a one, is also canonical.
One needs only to take as a transformation function

V==20a@)t (7N
and then according to (6)

B = —g{; = q:(Q).

The identical transformation is contained within
=";Qtﬁt (8)
Above and beyond this the theory of canonical transformations
permits the introduction of general dynamic coordinates in such
an extraordinarily free manner that their choice can be adapted

very exactly to each problem. With the general transformations
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(6) naturally the character of the variables Q.P, as location

and momenta coordinates is lost. Only in their totality do they
give a picture of location and motion states of the system under
consideration. Because of their mathematical relationship with
the tangential transfcrmations of geormetry, these transformations
are frequently given the name tangential transformations.

One can also list other canonical transformations which
fulfill certain side conditions if the latter can be brought into
the form of a relationship between the 0ld and the new coordinates

29, Q. ) =0 9)
These can simply be listed with the identity (4) with Lagrange
multiplicators and one obtains then as determiner equations

of the correspending canonical transformations

= ”Q,““Zl'ag

=_9V _ ;,EQ.
P oq. = * 8g, (10)

K= H+ 3+ Sy

which together with relatlonshlps (9) are sufficient to determine
the cuantities qy, py, ) r as functions of Qx, Pr. A special
case of this is, for example, the existence of a side condition
P (‘lx,t) =0
for the original coordinates.
Finally one would have been able to multiply the left side
of (3) also with a constant factor N without destroying the

property of the transformation to be canonical. That leads us,
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for example, to transformations of the type

Po=p. Ou=hq, K=AaH, (11)
which are often used. On the other hand the general form of
the tangential transformation usual to geometry-- A an arbitrary
function of the variables--is not applicable here.

The canonical transformations are, as stated. independent of
the choice of the special Hamiltonian function. If one therefore
wants to have only the conditions for the transformations of py,
q into Py, Q, then one can limite himself in (4) to the
variations with [& ts0that is, treat t as a constant parameter.
If we designate these variations for the sake of distinction with
a S. , then one can write the conditions for canonical trans-
formations also in the form

;pgéq,‘ —:ZEP.;éQ; + 0D(Py, O, ¥) (12)
in which no reference is made at all to the special mechanical

problem. The variations D and S. are thereby in each case

explained by 1y ,
0 oF
AF (pr, qun ) = D50 0+ D 55,40 + g3 40
k &

oF 6F
51"(?3,'1&,’):_2555%*;’5;61’* (13)
Equation (12) has thereby for the characterization of the

transformation the same degree of generality as (4) and one needs

Lthe symbols A and [ are chosen in analogy with the
general and virtual shifts in Chapter 2, No. 23. The difference
is merely that now also P can be varied since it also appears
as a variable in the variation problem.
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the latter form only to designate the new Hamilton function.
Naturally one can introduce also in ¢ as previously in place of
P the q and obtain the explicit transformation equations (5)

with the help of the function V(q, e t).

With the introduction of the canonical transformations the
most important step in the integration theory of mechanical
equations is already taken. This will be presented in No. 12ff.
In order to understand them a knowledge of Nos. 4 to 11, which
give further explanation about the properties of canonical trans-
formations, is not absolutely necessary. These can therefore be

skipped during preliminary study.

4, Introduction of time as canonical variable. Above and

beyond the canonical variation problem one can arrive at a still
more systematic form of the general variation principle of
mechanics by divesting time of its special role. First one can
formally eliminate from the integral in equation (6), No. 2 the
Hamiltonian function H(r, q, t) still remaining there by adding
a side concition and requiring f(; peie — W)dt=Extremum
(1)
among the side conditions
W=H(eq:t)
If we now introduce in place of t a new parameter ¥y , t = t(vY),

the arc of the path curve or in the theory of relativity the

Eigenzut (proper time) then we get the form
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1
f{> f’k( h — ji}dt =. Extremum,

with

(2)

W= H(p. g, 1)
as side condition. This form suggests that we introduce t itself
as a new canonical variable (7 , to which the % = -W is
conjugated as momentum. Through this we obtain the absolutely

symetiical form

/’{ZPHK + pq’}dt = Extremum, ' (3)
while Foro.qe,9.9) H+p=H-W=g,
(4)

In this the dash characterizes the derivative according to
The mechanical system is then no longer characterized by a
function, the Hamiltonian function, but an equation, namely

F(pe, g . 9): - H—W =0 (4)
between the 2f + 2 canonical variables and momenta. This form
of the variation problem can also be applied, for example, to the
theory of relativity. 1In general, in place of F = H=W an
arbitrary function F(p, q, W, t) = 0 can appear, but through
solving according to W always the canonical form (4) can be
obtained.

The general motion equations become according to the multi-

plicator rule of No. 2

dc~ d¢ ¢F _ ,é
'Hap T~ T =g
!P. or db . aw -
dz "aq. dy T T dv T "‘T- (5)
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which for the canonical form F = H-W because

di . /.'('(11_ ’_EV) =1
(A

de = Trew T T

can be reduced to the usual canonical equations

dgy d _ CH—W) _ {H dW dr _ (H - W) _ oH

de dt € Pu Tépt de dt — 7 ot T

d'b!‘, de o(H - W) _ cH dt _

de dt =7 agn T T ogt  ar =4 (6)

Also the canonical equations can be generalized so thac
they include time. For this the necessary and sufficient condi-
tion obviously that the differential form
%:PtAPAT“JJl.
with which the variables py, q, P , t are still joined by the
side condition H + 7P =0

(7

should change to a differential form SPAQ: + BAT +- 49

the variables of whicn d4are joined by a corresponding side con-

dition: K,'_ ? =0

Thus each arbitrary canonical transformation of 2f + 2 variables
dys Pps ;P renders into Qy, P, T, 3 , which therefore are
generated by an arbitrary function V*(qy, Qk, t, T). Thereby

the function is to be so designated that one undertakes the
transformation in equation (7), solves the thus obtained relation-

Ship and finds = -K(Qh P, n
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I1f especially t is not to be transformed, that is, if ¢

changes to T, then V* has the form VA=t Vg, 0.9,

since then according to No. 3, equation (6)

ave ,
. em £, p= W= Ey —*%-‘h};"
that is oy

—R = K — av
m I\(kapknt)~—w+>at—=ﬂ+_é‘

One thus returns to the formulas of No. 3.

5. Integral invariants. As with every transformation, the

question as to the invariants is of great importance also with
the canonical transformations, that is, the question as to lunctions
which do not change their value in the tronsformation. One can
give a series of such invariants of all canonical transformations.
We will discuss next the integral invariants first considered by
Poincarél).

The integral I =j'f;dp.dq.,

(1)
extended over an arbitrary two dimensional area of the 2f--
dimensional phase space of the py and qi is an invariant of the
canonical transformations. To prove that, we set up this two

dimensional area so that we give py and q as function of two

1) u. Poincar€, Les methodes nouvelles de la mé&anique
cfleste, Bd. III, “ap. 22/24. Paris 1899. Beweis nach E. Brody,
zs. £f. phys. Bd. 6, S. 224, 1921.
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parameters u and v.

vy P
| Cu cu
]l_’/%:("pk Cqu d dv
- (v du (2)

The canonical transformations are taken in the form

py = TV Prot)
k aqk ’

6V( Pyt 2
Qk q(‘p r ) I (J)

and by means of q the equations of the first line. change the

Py 2S functions of the qy, P, into Jj, whereby the value of t

in (3) remains constant, therefore t is to be treated as a constant

parameter. Then

- - ENY SV ep
P Q| i oo oP; dq.
o —— CQCP, Cu Cu ! -

\ cu o Cul| ) b PV | ou  du
— Py U]r S" V v epi Oq. ! _ZWIGP, 0P, dq. |
{v v "o ‘—d 0g6P, ¢v dv f v ov |

By exchanging the indicator we get for this

6P, dqi!

&V i 6u  ou:
c‘)q,oP,“ (Pk oqu)’

, OV -517{

If we now with the help of the seconf row of equations (3) change

the q, Py into Qy, Py, then we get

OP 2V dq, !
@
2 o ap.aq,au (%{:‘5 ‘;_?"}
| = 1
‘ WPg v 6q, Zxapk 80, "
év d c"P,,éq, du v k 00 60

And then it finally becomes

%ﬂ_’s gqu CPy 6]
“ i  Ou O |
Z;Op. &q,]—ZfaP. oQ.!’

Fiow Gu| Y v v

(4)
with which the invariance of the integral (1) is proven.

Analoguusly we can prove that invariance of

Ii=[[[ 3 amdridadq (5)




and generally that of .
BN ECLIER N
]n—_[' './"’T:k”dp"l"'df)‘ndqﬂx"'dqbu 6)
The last integral of this series is the volume in the phase
space of Py and qy - o
Jr=[5dpy . dtaq ... dge,

- (7)
which is therefore also an invariant with respect to canonical
transformations. Thus it is simultaneously demonstrated thac the
fundamental determinant of a canonical transformation is equal to
(1).

As we will show later (No. 9), the time change of the
coordinates and momenta of a mechanical system can also be
regarded as a canonical transformation of the same. All invariants
of canonical transformations are therefore also motion invariants.
This is so to be understood, that the points of the corresponding
2n-dimensional areas in the phase space are to be thought of as
image points of a corresponding multiplicity of similar mechanical
systems with somewhat different initial positions. Through the
motion of these systems the original value region of the p, ¢
over which we are to integrate is changed into a different arc
which, according to our law, has the same volume. In the pqt-
space therefore the world line of these systems forms a tube of

constant diameter. For Je this is the Liouville principle

fundamental to statistical mechanics.
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The integral invariants (1) and (6) to (7) are called
absolute, because in them over the integral region no prerequisites
are made. They can be changed with the help of the multi-
dimensional generalizations of the Stoke principle into relative,
that is, over the closed integral region into extending integral
invariants, whose order, that is, number of integrations, is
lower. For example, in place of (1) comes the invariance cf the
integral to be taken over a closed curve of the pg-space (which
would have to be in the pqt-space on a plane t = const.).

]1=§3;Ptdﬁ- (8)

From the existence of the integral invariant (8) viz (2)

for a system of transformation equations

@1 = q{Q:Pit),
o | (%)

it follows inversely, as will be shown in No. 6, that they
can be brought into form No. 3, equation (6), and that therefore
the used transformation is canonical.

If one choses as integration region in (1) that of two
infinitesimal vectors of the pg-space whose components are dqy,
dpy, viz. qu, ka, a stretched parallelogram, then the
invariance of the bilinear covariants which belong to the
differential form Z’ Pk day follows

;(dﬁkd% —dpdry). (10)
Also their invariance is, according to what has been said,

sufficient for the canonical nature of a transformation. Mpreover,
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the invariance of (10) according to *hat which we said about
equation (3) is only true when either V is independent of t or
the two small vectors together with their images in the PNt-
space lie on plane t = const., that is, when they are Js- varia-
tions in the sense of No. 3. Otherwise (10) is not invariant,
but the covariant belonging to the differential form

z:pk dqy - Hdt

N(dppdg - dpo g — (1Hdt — dHAY). (11)
k

6. The conditions for canonical transformations, expressed

by means of the Lagrange and the Poisson-Jacobi bracket symbols.

One designates the expressions in No. 5(4)
. UJ :Z\Qq" 6_& -— f{‘f_)'i (:q"

cu v cu cv
k
épk qu‘.
N du ou
e b x|
1. ov ov |

(1)

)i

!

as Lagrange bracket expressions. They are, is we saw there,
invariant with respect to canonical transformations. ©Under u and
v were understood in No. 5 any parameters coordinate with the

coordinate values of a two-dimensional sections of the pq-space.

As such the coordinate values themselves may naturally serve.

This leads to the equations [y p1—1(4, ¢ =0,
0 fir i+
[91‘-?1:]:6.'1::‘1 fﬁ: 1,*'] (2)
Their invariance signifies the correctness also of the equations
(P P = [0, Q) =0,
3
[Qit Pk] = Ok, l ( )
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whenever the transformation (p, q) —3 (P, Q) is canonical.
Conversely equations (3) are sufficient to assure the cancnical
character of the transformations as we will soon show. They are
therefore the characteristic differential equations which the

P, q as functions of P, O must satisfy, so that the transformation
is canonical. The proof is stated as follows:

Equations (3) in their complete form are

/g ¢h Ope 6q\ _
LQI:: > <OQk OPJ 0()1; c/P,)_éjk’

- \ cq CP(_ _ j P (77(11 > —
erQ}) ‘7_‘ (ko de (’Qk (?Qj Oa
- éq opy ‘pocqy _
P jg(wuéa ua(a)‘o'
They can be rewritten as follows
¢ N, g ¢ INY, da _
cP\~-m&Q;”qu—é@<ﬁdpcﬂ =0,

o (N7, Oq ANPRL’ -
G (Zn i - n) = (X )=
¢ aq, oq; _
SiSnE) (i) e

These equations mean, however, that a function é(Qk, Py t)

exists for which 0m od
2 Py =30

Oq,
and 2 bhigp, = cP.

If one now forms the J-variations of @

= aQ 6Qk+2

\ s, S 00+ 2 Pl 0P~ D PidQs,
k

and considers o
6?:=26 d(?ri'z q'aph
k
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then one gets S =%~qul —.?_’P,,AQA,.
Therefore for the transformation formula
% =q(QnP, 1), D= p(Qn P, 1) (@)
the relationship (12), No. 3:
%,‘f’k(”]k =X Tud0s + 40P, Q. 1).
With other words, transformation (4) is canonical.

With this we have demonstrated the proof for the claim
stated earlier in cannection with No. 5 (8) that the existence
of the invariants No. 5 {8) or No. 5 (2) is sufficient to assure
the canonical character of transformation (4). Thos invariants
are derived from equations (3).

Closely related to the Lagrange bracket expressions are the

symbols named after Poisson or Jacobi.
. du v du dv
v =2 (i — o9 o0 (%)

The relationship of the two exists in the fact that for any 2f

independent functions uj, .....upf of the py, q) these equations
.. o
are valid: QQM»mHm,w]=én-
(6)
They can be confirmed immediately by direct calculation taking
into account that the sums How, dy
t=1 -3787‘

only then can differ from zero and are equal to one when x and

y mean the same as the quantities py, q.
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Equations (3) and (6) produce as further necessary and

sufficient properties of a canonical transformation the system

(P Q. Qi 0.
\(‘/ ,I)A):AALI (7)

by taking for the u, the Py, and Qy themselves. They produce

the differential equations which the new variables P, Q must

fulfill as functions of the original p, q (therefore inverse

formula of the transformation) so that this is canonical. Equations
(7) are synonomous with the unvariance of the corresponding special
bracket symbols. With the help of (6), however, the invariance of
the Poisson bracket (u, v) is proven for any two functions u and

v of qupx from the invariance of [u, v].

7. Further properties of the bracket symbols; the laws

(principles) of Poisson and Lagrange. The Poisson hracket symbols

have recently attained special significance as the result of their
introduction into quantum mechanics D- Therefore a few further
calculating rules and laws related to them will be listed here.

First, according to definition (5) of No. 6 the identities

hold (4, ) =0, (4, v) = — (v, w),
du é
eg, = 1) = — (s, w), a-p“; =g ¥)=--(g) (1)

1)Vgl. besonders die Arbeiten von P. A. M. Dirac in den
Proc, Roy, Soc. London (A), Bd. 109, S. 642. 1925; 110, S. 561,
1926; 111, S. 281, 405, 1926.
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(u, (v, w)) + (v, (w, u)) + (w, (u, v)) =0 (2)
The left side is obviously linear and homogeneous in the second
derivatives of u, v, w. We now take together the members which
contain the second derivatives of u. The first member of (2)
certainly contains only first derivatives. The second and third
can be written according to (1) in the form

(v, (w, u)) + (w, (u, v)) = (v, (w, w)) - (w, (v, u))
If we introduce the differential operators

Dl(f) = (v, ), Dz(f) = (w, £)
then the members which can contain the second derivatives can be
brought together in the form

(D;Dy - DyDy) u
Such a combination of two linear differential opersators never
contains two derivatives. If for example

p=3al. -3k
k

. . Pat) V. ¢ 3
then D, D, =2 & = _*_2 & Z![‘ £
ki

Therefore . ] -
DLDZ_D2D1 :; E(;"}‘f—,’l— C:x)] y
[

ox, koxal| 02

is also an operator which contains only first derivatives. It
follows that in (2) absolutely no members with the second
derivatives of u can enter, and since the same must apply fcr v and
w, then the entire expression must disappear identically. Equation

(2) is the so-called Jacobi identify.




- 30 -

As the result of (1) it is possible to give the canonical
motion equaticns [cf. No. 2 (9)]

' ____&f_[ . __OH
?k"’ a_ﬁ' ‘/k—apk (3)

in the form Po= (e, H), e =(qs, H)

(4)
which is used in quantum mechanics in an obvious transcription.
If or.e considers (3) then one sees further that for every
integral F(q, p) = a of motion which does not contain t explicitly
(F, H) = 0 (5)
This statment means, namely, only that the gradient of the

hypersurface F{q, p) = a in the 2f-dimensional pqg-space on the

phase path element ) o H

. 6H
stands vertical. The eleaent thus lies entirely in the surface.
o Finally we will derive still another unusual and iwmportant

principle frum Poisson which, however, was first recognized by

s W T T

Jacobi for its complete significance. He made it possible in a

TenT e

. few cases to find new integrals of the mechanical equations. He
said: If F = const. and G = const. are two time - independent
integrals ofthe canonical equations (3), then their Poisson
bracket expression .

OF G 9F 0G\ _
(F.G)—Z(‘g;.a‘g"mbﬁ) koust., (6)

is also an integral.
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The proof follows directly from (2) if one remembers that
according to (5)

(H, F) =0 and (H, G) = O.

It follows that

(H, (F, G)) = 0. (7
that is, also (F, G) = const, is an integral of the canonical
equations.

Naturally through this process one does not always get new
integrals since there is only a limited number of them, but one
the other hand, one gets quite often only a trivial one or one
which is a function of the two first F, G.

Also for the Lagrange brackets there is an analog to theorum
(6). If we use the already-mentioned theorum, which we will
prove later, that the coordinate change of a mechanical system
in the course of its motion can be regarded as the development of
a canonical transformation, then one receives from the invariance
of che brackets the theorum of Lagrange. It says that for any
two-dimensional solution grouping

a3 = qj(a, b, t), Pj = pj(a, b, t)
of the canonical equations where therefore a and b are arbitrary
integration constants, for all times,»that is, along the entire
mechanical path the corresponding Lagrange brackets are

[a, b] = const. (8)

of the canonical equations where thcrefore a and b are arbitrary
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All above theorums can be generalized easily to systems,

integrals which contain time explicitly by regarding accord-

As definition

viz
ing to No. 4 time also as a canonical variable.
for the Poisson brackets, which we now write with braces to

distinguish them, one now has

Cu v
o vp =) = ) oy

, fu év
= (¥, 'U) -+ it é«p

Correspondingly one can also extend the Lagrange brackets.

considerations of this No. and of No.

du (v
oWl
cu v
ép ot

(9)
The

6 can then be literally

transfered, only that instead of H we must write H - W viz H +

Form (4) of the canonical equations therefore now is

2= {Ps, (H—ri3}=_f9(_f1€q—7@__g_qu;'
7 = {a, (1‘1--11/)}:519’(7 .;.‘_")_ g%{’
t={t, (H=W) =1, (10)
W= w, H-wy=2=0 oK
From them it follows for arbitrary functionsF(pk, qs W, t)
Fo St Gpb) + 5+ G W L = W) (11)

Each integral of the mction equations fulfills thus the condition

analogous to (5)

which for integrals independent of W

oF

{F,(H--W)}=so,

(12)
reduces to

(13)

The Poisson theorum says now that with F = const, and G = const.

also
{F, G} = konst.

R

(14)

il gl b &

Syl ¢

N
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is an integral of the canonical equations (10). From equation
(14) there follows a simple form (6) if only F and G are both
independent of W. The limitation to time-independent inte_ral:

is therefore not essential for (6).

8. Continuous transformation groups. The question as to

the significence which the integrals of the canonical equations
have for the problem of variation, can be treated in a very
elegant manner with the help of the theory of transformation
groups. On this subject we must state in advance a few theorums.

We change the mechanical system of a transformation to the

. —

foimi) =" o
% = Pl 1 &) = Pa ‘?‘2:;"" P B d)

=0t N =4 +:x°‘" g (P qn) .
n=

(L)

This transformation thus contzins stil! another parameter according

to which it carn be developed in a power series and changes for
X = 0 intc the identical transformation. If Q{ 1is very small,
chen we have a transformatior in the vicinity cof the identical.
One calls it then an infinitesimal transformation. For every
value cf x we have a derinite transformation. Through (1),

therefore, a whole set of transformations is determined.

1)Here it makes no difference whether or not one takes the
Pk» dx or the P, Q. as the original variables. For the sake
of convenience in No. ? we use the above form which agrees with
the solution of a transformation py = py (P, Q), qx = qx (P, Q).
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We want to require of these transformations first that they
form a s¢t, that is, that two of the transformations with any
values X1, o2 stated one after the other, again produce a
transformation of the set. Liel) has shown that the linear
members of the development (1), which we will designate with

?k> q Kk’ on the basis of this requirement determine completely
all following members also, and thus alone are characteristic of
the transformation. To a set of such members belong therefore
only one group. A proof of this would take us too far afield.

We limit ourselves to listing the transformations, and thus to
showing how one obtains the higher members from those of the first
order.

One form with the help of Py, i k the following dif-

D‘—‘ZP&;%-FZQ;;%-

ferential operator:

(2)
which one designates as generating symbol of the set. With
;P k» 1 k thus also D is given. One can define in three
different ways the transformations forming the set, which
naturally lead to identical results.
a) One forms the series
P3=U’E]Eﬁk+“D?!‘T‘a§D’PE+'“=2§;D.f’h
z 3

2 L
Gr=[q] =q +aDq: +%D’% + e =2%D'7ﬁ

n=0

s, Lie, Theorie der Transformationsgruppen, Bd. I, S.
51 ff., Leipzig 1888.
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whereby the D" are operators which arise through n applications

of D. For the sake of abbreviation we introduce the symbol

~

F. =g;] DF (4)
The series (5) are therefore only definable through differentia-
tion and multiplication with the help of Pk, Qk’ as we can
easily show, even for sufficiently small @ convergent. For an
arbitrary function F( Py qk) it is true also that

F(Py, Q) = F(lpil, [aqpl) = [F(py, @)l (5)
From the representation of (3) one can also see that the general
transformation (1) can be built up by continuous repetition of
the linear (infinitesimal) transformation

P = Pk O P> % T % Fdqk

(b) One forms the partial differential equation for the
function F of 2f + 1 variables Pks Q>

aa‘DF*ZPeam-f- S, (6)

and looks for thos integrals F(py, Aes K ) which for & =0
change themselves into the variables P> 9y Then the integrals
designated thus 2f Pk(CK > Pp> ql) Qy (K Pp> ql) are exactly
the desired transformation functions. That this definition
agrees with the first can be seen from the definition (4) accord-

ing to which for every function [F] it follows that
ar "+
D(F] =§;ﬁo IF,

= F1= D' priF
n=0
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Every function [F] satisfies by itself the differential equation
(6). Therefore the functions Py (pl, ql), Qk (p1> ql) defined in
both ways must agree also for O = 0 which clearly defines them
together with differential equation (6).

(¢) The functions describing the transformation are also

the solutions of the system of 2f ordinary differential equaticns

e, _
e PP, Q).

‘3%!=qk(P" Ql)t (7)
which for = 0 assume the values py, q; . Here on the right side

the new variables are to be thought of as being introduced by
(3) while the old variables appear as integration constants ot
system (7). That this definition agrees also with the first
and thus agrees also with the second can be recognized with the
help of the series development (3) and definitions (2), (4) and

(5); then one has one‘?fter the other, for example
Pg d k.
= 1y = [
= (P, (91]) = wa(P1, Q) .

The relationship between the various transformations of the

group is likewise a very simple one as can be shown with the
help of presentation (2). If namely f,, f5 . . . . fg are
solutions of a linear homogeneous partial differential equation
such as (6), then it is obviously also an arbitrary function

F (£;....fg). Since now, for example, (pid A = oA isa
solution of (6), then it is also [[pk](Kl]O(. = d 9, and

since [py], is the identical transformation then
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[pk]OJO(L = [pk]¢2' This property of Ry = 0 to become equal

to [pk]uz has also the so.ution [Pqul +@®2, but since there is

only one solution of the partial differential equation which for

sy
.

(Xl = 0 is equal to [pk]‘X , then {U»k]a,],‘=[p,,ja.,a‘
that is, the transformations with the parameter A1 and A 2
introduced cne after the other, produce the transformation with
the parameter ( ; + (X,. With this we have also demonstrated that
our transformations really form a set.

If one considers now a function f(Pk, Qr) and applies to it

transformation (3), then it goes over into

(]

Py, Qo) = U (Pes 98] =Z;:D"f(?t: %) -

n=0

If here f goes over into itself, then one calls a function of
this type an invariant of the group. For this obviously to be
necessary and sufficient

Df (Pks Qk) =0
becomes identical in the Py> dk since then all higher members of
the exponent development disappear and only the zero member,
i.e. the unity operator remains. The invariants of the group

satisfy therefore the partial differential equation

- af of
Df=2¥’k;3~p'; +k2‘ha—q.=‘0- (8)

9. The meaning of the integrals of the canonical equations.

After this preparatory discussion let us return to mechanics and
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and ask when is such a transformation group canonical, and there-
fore contains only canonical transformations. We will limit
ourselves for the sake of simplicity to the case that the inde-
pendent variable t does not appear in the Hamiltonian function of
the system. Otherwise as in No. 4, t would have to be treated
likewise as canonical variable and also be transformed.

The condition for canonical transformations was [equation

(12), No. 3] ;P&dﬂ =3 P,00Q; + 690,
(1)
where operation was defined by 6/(quk)=2'§‘,f,;5f’k ‘*‘Z"gqu"‘h
P k

If we introduce into this the formulas (3) of No. 8, then by

taking equation (2) of No. 8 into consideration

Zﬁkaqk =Z(Pk + o+ %;:ng + .--\)(6& + adqe+ g;éDQk + ) @)
k k o0
42 arod,, (2)

n=0
where 4) is also added as power series in

o =i’a"¢..

n=0

In order that relationship (2) is frlfilled identically, all

powers of (A must have equal coefficients on both sides. There-

fore at first éo = 0. The linear members produce
;ptéqb+},‘:?k6Qb=6¢l (3)

identical in'the py, q. If one has chosen ?k’ i k 8o that
this relationship is fulfilled, then the higher powers are

produced through the appropriate repeated application of operator
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D to this first relationship, and one sees very easily that
equation (2) is generally fulfilled if one places
b=ady+ 1)«1'1+;:foz<pl+...
If we now instead of él introduce the function

—Wipr, ) = D, —;quae:
— 8 =09, —;PMQI: “EQkéﬁk

then (3) changes into the condition

< N —_ Ok
%pbd‘h —udp = o (4)

It is then and only then identically fulfilled in the p, Q> if

¥ . v

Pk="‘o—qk. A 'T‘r:p‘

Y(pk, qk) is itself to be chosen absolutely arbitrarily and
one thus obtains the most general group of canonical transtorma-

tions by means of the operators

N\ ¢ e ¢
D—_f.aep‘eqk i Cq, TPy (5)

whereby according to equation (2) and (3) of No. 8 the trans-
formation formulae themselves are given by
i , a? cyr
P palr + 05—

aro et el

Q=g+ ¥y + 37 Dep + oo (6)
These transformation functions are according to the results of
No. 9 simultanecusly the solutions of the partial differential
equation %f; = DF,
)]
which for ( = 0 change relatively in Pio Q- Furthermore they
are those solutions of the system of differential equations

@ =g da OB (8
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which for O = 0 assume the values S The canonical groups

K
depend in agreement with No. 3 on one single arbitrary function,
namelyﬁﬂf, which is designated as the generating function of the
group.

By means of the canonical group in general naturally the
Hamiltonian function of the mechanical protlem changes into
another function. We now ask--that is the essential point of the
following investigation--if there are groups which convert the
problem into themselves, that .s with respect to which H is

invariant. For this according to equ~t:. :n (8) of No. 8 it is

necessary that H satisfies the partial differential equation

>M\(‘5§'en v H _
UHNHF“wFE~(m(W)(WJn_o (9

where (‘P, H) signifies the Poisson bracket symbol (see No. 6).

I1f we therefore want to designate for a previously given
Hamiltonian function H the transformation groups with respect to
which it is invariant, then we must select the respective functions

which satisfy partial equation (9). These ace then the
generating functions of the group. There are thus as many
canonical transformations of the problem within itself, as there
are integrals of this differential equation.

According to No. 7 (5) equation (9) means that \P is an
integral of the motion equations. We have thus reached the

fundamental statement that the generating functions of those

canonical transformation groups, which let H be invariant, are
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integrals of the canonical equations. Inversely it is obvious

that each one of these integrals generates a group of canonical

transformations of the problem within themselves. The kanowledge

of the transformation groups of the system is therefore equivalent

to the knowledge of the integrals.

As one gathers from (8) the formulae which produce a trans-
formation group have the form of canonical equaticns. These
therefore can be interpreted inversely also as a canonical
transformation, with which t plays the role of the parameter

and H itself forms the generating function. This trans-
formation adjoins to every value system pﬁoz qﬁo) at a def..ite

time to (t) that value system p(t) (t) in which the mechanical

k 9K
system would find itself through the course of motion from the
starting state péOZ qéoz to the time t - to. One can therefore

conceive of the course of motion of the mechanical system as the
development of a canonical transformation. This statement we
have used already in Nos. 5 and 7.

The simplest special case is that of the cyclical coordinates
(cf. Chap. 2, No. 11). If for example q is cyclic and therefore
does not appear in the Hamiltonian function, then is a trans-
formation of the system in and of itself and

p = const.

the coiresponding integral of the canonical equations,

With the help of the general theory of transformation groups
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one sees immediately the significance of the ten general integrals
of the systems of free mass pointsl), for these systems are the
displacements, Galileo transformations and turning transformations
of the system within itself, which do not change the energy. To
them correspond the principles of the center of gravity, conser-
vation of linear and angular momentum. To the conservation of
energy correspond the transformation T = t + const., which also
transfers the system within itself but contains time in addition.
If, for example Xns Yno zn are the x, y, z coordinates of

the n-th mass point, then the first group of the transformations

are
Xy == ‘\’/4+~"rlr b= ptu'
yl: S'nv py,,zpy.v
=2, b, =Pz.;

It means a simple displacement of the system in the x-direction.

The corresponding symbol of the group is according to (5) and (6)
lI/= \\V’\‘", Dzsy.(’) .
A’ — X,

. i .
The corresponding integral therefore is 2 bew == konst,
]

This is the first center of gravity integral however. Likewise

one finds the two others Py =konst.,  >'p, = konst.
» »

1)S:I.et}e Kap. 7, Ziff. 24 ds. Bd. des Handb. Man bgl. auch:
F. Engel, Uber die zehn allegemeinen Integrale der klassischen
Mechanik. Gottinger Nachr, 1916 u. 1917,
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The second group of the center of gravity integrals

~ Al T
l Mp X, = l_\‘f’," -a- Kkonst.
n "

contains time explicitely. To treat them therefore the previous
considerations about transformations, which ccntain time, would

have to be expanded.

To the angular momentun conservation laws belong the group

Xp cosa + y, sina,
—Xy sinx -+ ¥, COS&,
pr.COSX + p, sinx,
—pzasina 4 p, cosx.

of rotations

U

*v;u;::':

-
x

The corresponding symbol is as can be demonstrated easily by

expansion according to D =Z(y,. E‘i.‘ - ”"’é% + Pz.o—ﬁ,— - P,.gg_—).
To this belongs the integral 5"=};(Pv.xn — Dun¥n) = konst.,

and this is the conservation of angular momentun about the z-

axis. Similar ones are applicable for the x and y axis.

10. Reduction of the order with the help of known integrals.

The canonical transformations make it possible for us to utilize
any previous knowledge we might have of integrals of the canonical
equations and thus to reduce the order of the differential equation
system. In very many cases there exist, for example, the emnergy
integral corresponding to conservation of energy and the center of
gravity and surface integrals corresponding to ccnservation of

angular momentum. In the problem of the three bodies with their



g S R £ A

- 44 -

help one reduces from the 18th to the 6th orderl). In general
one can with the help of the known integral eliminate a canonical
pair and therefore each time reduce the number of variables by
two.

Let therefore an integral

G (pk, qk) = const, =g

be known. The task is therefore transformation to reach a
suitable new variable so that a pair, for example Pl’ Ql’ drops

out of the Hamiltonian integral f‘WPA%—-Kﬁ“==EMRWNm

J
4

This is accomplished obviously when we are successful in making

the new variable

Pl = G(pk’ qk) =8 1)
Then P1 becomes constant; thus ?1 = 0 is an integral of the
transformation problem; and because
ik oK

By=—;5=0, O = gp;
Q1 and K must then drop out while P1 now only plays the role of
a constant parameter. The variables Q,, Py (l=2, .... £)
form thus by themselves a canonical system with the Hamiltonian
function K.
So that (1) is now true, the transformation function V,
which should generate the desired canonical transformation,

according to No. 3, equation (5) must satisfy the condition

vgl. Kap. 7, Ziff. 24, 27 und 28 ds. Bd. ds. Handb.
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Po= =g, = 6l ) 2)

This is a partial differential equation which possesses correspond-
ing integrals with which the possibility of reduction is shown.
It can be carried out without really looking for a solution to
the partial differential equation. If one has namely first
determined V according to (2), then with the corresponding
canonical transformation, Ql falls out of K by itself. One can
therefore give Ql for the purpose of the transformation any
arbitrary value, especially the value zero, and must nevertheless
still come to the correct function K. Therefore one does not
need to know the dependency of function V on Q,; moreover it is
sufficient to have its value V(qk, o, Q2, oo Qf) for Q1 = 0.
This is, however, entirely arbitrary, for according to tue
existence principle for partial differential equations, one can
always give an integral of (2) which for Q = 0 changes into an
arbitrary given function V(qk, QZ’ veee Q)

We can therefore proceed as follows. We take an arbitrary
(except for one limitation which we will give soon) function
V(qr’ QZ’

and possibly even of t and express first the Py by means of the

coes Qf) of the 2f - 1 variables Qs eece Qfs Q2, ce.. Qg

equation

0
b= e = PG 0 O ) (3)

as functions of Qy and Qk' These values we insert into the side

conditicn (1) so that we get
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G{(I;‘..‘n}'/"-“’ R Goyy P R Y ] ::g:[))‘ (4)

\Y
This equation we take in place of P, = Q which according to the

above boundary condition is permissible. We now set

Pim = Py g O ), (=2 (5)
then (3), (4), and (5) are together the desired transformation
formulae for p, q irto P, Q. V thereby undergoes only the
limitation that the equations (3) and (4) must be solvable for
G4 - The new Hamiltonian function then is the usual

K=H+5

and does not contain the variable Ql’ however P1 = g is to be
considered as the constant parameter.

The simplest special case is again the cyclic coordinates.
1f for example, 4 is c¢yclic and therefore does not appear in L

and thus also not in H, but it does in ql viz Py> then

8
a—qli = p,'=konst. =¢
1

irf the integral and the canonical problem already has the form

we are seeking. We therefore can simply suppress Pq and q, so

that we as variation problem get

f{;m — K(p, qi, c)} dt = Extremum, ((=2,.../)
4

where H(pl, PLs qL) = K(c, p;, & ). The whcle procedure of tbis

section (er) means that one with the help of an integral can

make a vaciable into a cyclic one.

11. The relationship between the various integral principles.

The just discussed ideas make it possible for us to erplain the
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relationship between the various integral principles in a very

instructive manner by evaluating the energy equator as a side condition.

These concepts which are closely related to those of the previous
chapter are inserted and discussed here since only now do we have
the necessary mathematical apparatus available.

First, we must return from the canonical variation problem
to the Hamiltonian. We assume, thereby, that we would have elim-

inated in the former, the side conditions by the introduction of

cyclical variables, as in the previous no. and apply now the Legendre

transformation. No. 2 equator (8b), In this manner, the new
Lagrange function--let q; be cyclical--becomes
K
L'=ZPI%E—I\. t=2,...pH

On the other hand

L=p gt D nin— =D nGs +eq—K.
1 1 1
and therefore, .
L* =1, - qu,
and the variation problem contains the form:
j{l‘(ql’dl) - cﬁ]} dt = Extrenum. (1)

In this the quantity q1» which does not even appear, in ccntrast
to the other coordinates, is not subjected to any limiting con-
ditions and &1, therefore, is a completely arbitrary function.

One can thus think of the problem as if no longer contained an
unknown dl w'.ose derivative does not occur and whose corresponding
Lagrange equation, therefore, is

oL
5, =0

(2)
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while the other Lagrange equations are not changed and thus give
the same extreme-values. Since (2) must always be satisfied, there-
fore, one can require this rclationship as a side condition and
then treat it as in No. 2. Obviously, the result is that (1) is

equivalent to the relative minimal principle

(3)
with equation (2) as a side condition.
Finally, one can eliminate now, il entirely by solving (2)
for él and placing it in (1). Then we actually obtain, again, a

simple minimal principle

B
F(c, p1, q)d! = Extremum, ¢=2,...H
A‘ (IR { . (3a)

only with one less desired function.

One can, as has already been said, use these ideas in order
to go from the Hamiltonian principle to the other integral prin-
ciple by applying them to the energy laws. This procedure, how-

ever, is only valid for conservative systems. In this case t

itself, is cyclical since it does not appear in the kinetic potential.

In order to be able to apply the above method, we must further in-
troduce (no. 4) as before, a parameter which places t equal to the
other variables. Let us assume all values as functions of an
auxilliary parameter T:

t=t(C). q = qT),
so that t(fl) = ty, t(gH) = ty and designate the derivative
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according to € by a dash, then we have

and thus the kinetic energy T, which we presuppose to be a homo-

genous quadratic function of cik

T = TG

The Hamiltonian px}nciple, therefore, changes to
f(_l_ T(qp) - U(qk)t'} d€ = Extremum
rap
T

whereby as alimiting condition, it is required that for y= Ty
viz. J = J , the dy and t change to definite values qil) and t(1}
viz, q{‘(z), t(z) . Now t is no longer distinguished and we can,
therefore, apply the previous concepts. Thus t takes the place
of 9 and 7 takes the place of t while:
L=lT—yr

An integral of this variation problem becomes

% =~ 5Tl —U=—E, (4)
therefore of course the energy integral. With its help one

obtains as equivalent with the Hamiltonian principle the form (1)

which here is T
f{ LT - Ur + Et’}dt = Extremum

(5)
where thus the limiting value of t is no longer designated. If
we again inversely introduce to as variable, then we get

B
j(T — U 4 E)d! = Extremum. (6)
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This is a new principle of mechanics equivalent to the Hamiltonian
which is still unknown in the literature and which should be called
the Hilbert principle. It says:

A POINT SYSTEM MOVES SO THAT WITH ALL MOTIONS WHICH WITH
ANY PASSAGE OF TIME LEAD FROM THE STARTING POINT A WITH THE
COORDINATES ¢, = qél) TO THE END POINT B WITH THE CCORDINATES
q = qiz), THE ACTUALLY OCCURING MOTION MAKES THE INTEGRAL (6)

AN EXTREME-VALUE WHERE E IS THE VALUE OF THE TOTAL ENERGY GIVEN
AT THE STARTING POINT.

From the principle follows naturally the en.rgy law since it
does not appear explicitly in the integrand. It does not require
it however as side condition and it stands correspondingly in the
middle between the Hamiltonian principle and the principle of
ieast effect.

Since E is the constan:, for (6) one can write

B
ﬂT—wﬂ+Emum=EMmmm
A

where ty - t; is the still unknown time which the system needs for
its path. One arrives back at the Hamiltonian principle when one
gives the time t2 - t1 to the motion.

To the principle of least effect we arrive by adding the
energy law T + U = E which follows from (6) as a side condition.

One thus comes to form (3) which because of (4) assumes the form
B

2/1'4! = Extremum while T+U=E
A

therefore exactly the principle of least effect (see Chap. 2, No. 25).
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The extreme-value is to be sought among all functions which in
any time at all lead from starting to end point.

Finally one can still eliminate t entirely and therefore
obtain form (3a). To do this one again uses the pramater pre-
sentation properly. This is procedure which led in Chapter 2,
No. 26 to the Jacobi principle which can therefore find a place

in these discussions.

12. The Hamilton-Jacobi partial differential equation.

We turn now to the integration theory of canonical motion

equations oH oH

H = H(g, pi. 1), §k=“gp;’ 1‘5&=—5E
(1)

We have come across parts of these several times already (in
No. 2, 7, 9, and 10), but the most important thing is still lacking:
a systematic procedure, which will be described in the following.
In this we will make extensive use of the canonical transformations.

According to No. 3(5) the new Hamiltonian function with a
canonical transformation of problem (1) becomes

RS

We ask if it is possible through a suitable choice of function
V to cause the new Hamiltonian function K of the system to disappear.
Then in a certain respect the mechanical problem is transformed

into an equilibrium problem. The function which does this we

will designate with R to distinguish it from other generators.
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Now R is a function ot 9 Qk and t and it becomes

_n o - ¢R 2
b=y Pi=—ion K=H+y (2)

The condition which R must fulfill so that K disappears is

therefore £ R Qe ) + He Peo f) =0

‘r

1 ‘R
or according to (2) o +1¥@“?ﬁ

1) =0.
(3)
This is a partial differential! equation of the first order for
R which was discovered rfirst by Hamilton. It arises by replacing
in the Hamiltonian function H the Py by the derivatives of R
according to the corresponding - . Since (3) for all arbitrary
values of Qk must stand, then they play the role of integration
constants.
The significance of the partial differential equation (3)
lies in the following. Let us assume we had tfound an integral
of (3) containing f arbitrary constants
Rigy. -G Gsee 0, 8) =0
therefore a function which for all values of the integration
constants satisfied the differential equation. This is naturally
not the most general solution of the partial differential equation
which would have to contain certainly an arbitrary function but
a so-called complete integral. We can then introduce these

constants Q(k as new variables since R should be a function of

the old and new position parameters. The transformation fo:mulae
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(5) of No. 3 produce in this case

oR
ptz a‘q! ’
(R
Po= =iy = the )
K = 0.

and the riew canonical equations become as a result of the third

line simply ‘idQs =3y, ,d;:s - ‘f{f’t‘ —0.
Therefore both the “k and the}k are constant quantities for
the mechanical system to whizb ~bhitrary values can be given.
They are called thecwanonically conjugated constants. With this
the integration of the differential equations of the mechanical
problem is completely carried out; this is because the equat.ons
(4) produc . the original coordinates of the system as functions
of time and of the 2f arbitrary constants A k and }k'

The integration of the canonical equations is therefore
reduced to the discovery of an integral of the partial differen-
tial equation (3) which contains f constants. At first not much
seems to be gained by this since partial differential equations
as a rule are more difficult to handle than usual cones. But in
mechanics it has been shown that for many important cases the
partial differential equation acsumes relatively simple forms so
that their intrcduction actually means a big step forward.

Only one single step will be developed here. If the

Hamiltonian function H does not contain timz= explicitly then the

differential equation (3) can be somewhat simplified. If we for
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R make the following condition:

R=S(gi, 0, ... 0&) — 041, (5)
where S no loager depends on t, and if we enter this condition
in (3), then oy = H (. (‘%", S

(6)
whereby time ti is eliminated. ¢ j thereby in general becomes
the energy constant and as such is designated by W. If we now
have found an integral S of the partial equation (6) which aside
from ¢x 1 still depends on f - 1 further independent constants,
then the solutions of the motion equations are

A T ”
The equations (3) and (6) are the simplest forms of the
Hamiltonian partial differential equation. Formulas (4) and (7)
contain the solutions of the motion problem in the obvious form.
But from a practical point of view many variations of the des-
cribed procedure are used. Thus one in place of (3) can also
require that the new Hamiltonian function K, instead of disappear-

ing, becomes an arbitrary time function f:t). One has to take

as generator of the canonical transformation the solution of the

diiferential equation %-{-H(q,,%)m/(:)
(8)
R is then related to T through
Re T~ fl(0d
(9)

For ex le can require that
uple, one can req 10 = konst, = &,
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(This is obvicus when it is a question ot a small disturbance
coming from outside of an otherwise closed system which without
it contains a constant amount of energy.) For this from equations
(8) and (9) we get
=, (8a)
(9a)
If especially H does not depend explicitly on t, then one can
assume T to be independent of t and thus return to (6) viz (5).
Furthermore in the case of a closed system it is for example
simplest but not always most practical to choose the energy
constant itself as one of the integration constants ot the
complete integral S. From normalization reasons in the theory of
stipulated periodical systems (cf. Chapter 4) and their application:
in quantum theory other integration constants are chosen--we
will call them J,--in which the new Hamiltonian function is
written o =K(s...])
(10)
One can however easily transform with a generator of the form
V=;Sm¢h~Jﬁﬂ»
the variables of " 4 3’3 K to the new constants Jk and the
variables conjugated cancnically with them. The latter are
because of (10) and &k -‘%%% = const. linear functions of time.

In all cases for the drawing up of the Hamiltonian partial

differential equation the view point remains standing thac one
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change to new variables of which a set are motion constants of
which conjugated set therefore do not occur in K. With other
words: one looks for a generator of a canonical transformation
in cyclical variables to the discovery of which the Hamiltonian
partial differential equation leads. Let it be mentioned
parenthetically that form (1) of the Hamilton an difterential
equation corresponds formally entirely to form (6) when cne

according to No. 4 treats time likewise as a canonical variable.

13. The simplest cases of the integration. The solution

to the mccion problem No. 12 (1) is now reduced to the integration
of the partial differential equation No. 12 (3) or (6). We must
look for a complete integral of the same provided with f inte-
gration constants » A procedure which always leads to this
goal can not be given. Let us discuss here only two simple
cases of the treatment :'f No. 12.
The first case that permits a simple integration is before
us when all variables with the exception of one single one (9)
are cyclic. One knows then the f - 1 first integrals
Bmio=m (k=20

and finds ,

S 200+ 5140 1, B
The differential equation No. 12 (6) can be reduced, since H is

independent of the cycli: variables CPSERRL VY to an ordinary

H(%%,q,. Ogs oee a,)-W-u,.
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from which then S1 can be obtaired by squaring.
The other case that permits a simple integration occurs when
the differential equation No. 12 (6) can be separated into the

variables Pro 9 This means that with the problem

S =;:Sk(qk) Ky a,)

NGEATA

Py = .:7(}; =
that is, when S is given as the sum of functic..s which individually
depend only on one coordinate 9, - the differential equation
No. 12 (6) separates into f different differential equations for
the Sk' For this it is necessary that already within the

equation ;i'(p,, b Q@) =W

each momentum Py can be conceived of as function of the pertinent
coordinates 9 above and therefore this aquation separates into

f separate ones Hate, 9) = Ap(,, ... )

The f separate differential eguitions for the S, then are

They make possible the calculation of the Sy by mere squaring.

The condition that H can be separated into the used coordinates

can be written according to Levi-Civital)
o oH oH
i g, o, l

o Bl fiaend
J PeEn nin e

OH &H @H_
3p Bg,85 P9t |

- e *s

1)'1‘. Levi-Civita, Math. Ann. Bd. 59, S. 383. 1904; F. A.
Dall'Acqua, ebenda Bd. 66, S. 398. 1908; H. Kneser, ehenda Bd.
R4y, 8. 277. 1921.
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Usually the separability is to be looked for in function H.

It is dependent upon the coordinate system and generally is in
need of the introduction of special separation coordinates in
order to accomplish the desired separation. In many cases the
separation syétem distinguished physically by the boundaries of
the path region. However, this is not always sol); indeed,

2)

Burgers ° has shown that with the motion of an electrically
charged oscillator in the magnetic field, the separation system
can be introduced only by a tangential transformation.

Examples for the integration by separation are among others
each central motion [as can be seen from No. 2 (15)], and the
two-center problem which, as Jacobi has shown, can be separated
into elliptical coordinates with the two fixed centers as foci.3)
Weinacht succeeded also for the case of a single mass point in
a conservative force field in finding all systems which can be
separated by point transformatioﬁo. The important result is that
the most general position coordinates coming into consideration
for the separation of the variables in this case are those of

the ellipsoid with three axies (including their degenerate forms).

Also the related functions for the potential energy can be

1)

2)
1918.

3)T. N. Hamilton in his writings used the term ''Characteristic
Function" where Nordheim ard Fues use "Eikonal."

E. Fues, ZS. f. Phys. Bd. 34, S. 788. 1925.

J. M. Burgers, Het Atoommodel van Rutherford-Bohr, Leiden

4)3. Weinacht, Math. Ann. Bd. 91, S. 279. 1924.
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listed and are obvious generalizitions of the above mentioned
cases. In addition, each small oscillation of an arbitrarily
constructed system around a stable point of equilibrium makes
possible a separatiorn. according to the method ot separate
oscillations. For the motion of a rigid body the cases of the

most general force-free gyroscope (possibly also with built-in
fly-wheel) and that of the symmetrical gyroscope in a gravitational

field are separableé).

14. The independency law of the calculus of variation;

Characteristic Function. At the close of the chapter on Hamilton-

Jacobi mechanics we still want to try to give an insight into the
profound thought processes which led the creators of this theory
and shich recently in the works of de Broglie, Schrodinger and
others have brought about a fundamental broadening of mechanics.
In order to understand this real kernel of the HamiltoneJacobi
theory it is useful to mention again a few theorems of the
calculus of variations. For this we start with form (4) of No. 2

of the variation problem
; oL .
j{L + E T kg)}dt = Extremum
k
4

(1)
The integral here has the simple form .
[
J ,./'(A +ZB.'%‘)1¢ (2)
[ k

. . e
Wi

prisadons m0 * 7

)ygl. G. Kolossoff, Math. Ann. Bd. 60, S. 232. 1905; F.
Reiche, Phys. ZS. Bd. 19, S. 394. 1918; P. S. Epstein, Verh. d.
Phys. Ges. Bd. 17, S. 398. 1916; Phys. ZS. Bd. 20, S. 289. 1919;

H. A, Kramers, 2S. f. Phys. Bd. 3, S. 343. 1923. ;

PRI



with A=l NoL, Be=3L.

The integrand is thus a linear expression in the derivatives
dk of q - In addition the functions k, which are to vary
independentiy of the q, appear, but not their derivatives. This
form reminds one of the complete derivative
St

of a function qp accoruding to time. It suggests the question as
to whether or not it is possibls with a special choice of ky as
functions of 94y and t to make the integral (2) indepedent of the
path in the qt-space so that it keeps the same value for all
possible functions qk(t) and therefore from a function of a
function in the sense of the calculus of variation it degenerates
into a pure position function ot integration limits. The values
of the kk then form a kind of proof of the qt-space to fhe extent
that to each point is given a definite value of the k.. One
calls such a proof a field and the question is whether or not
there are proofs in which the integral (2) becomes independent
of the path. Necessary and sufficient for this is that B, and A
appear as partial derivatives of the function é(qk, t):

a=5. B=g.

Then the integral

4

] -:j(A +ZB;§.) d =]’(‘%—;"’f +$-§%éx)dr = Dlty, ) — Bty )

becomes a pure function of the integration limits in the gt-space.
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For this A and Bk must fulfill the conditions ot integratibility

oA _iBe B _ By
59:

ot’ aq, Oq

The general answer how one must choose the k-field so that
these conditions will be satisfied is given by the independency
law of Hilbert:

The integral (2) becomes independent of the path when one

takes any system of intermediary integrals.

dg .
_d?k = qk(qlﬂ . q]; t)

of the Lagrange differential equations:

[L] q = ° (3)
and for every pcint q1s----q¢s ¢t then chooses the corresponding
dic-

We will prove this law here, only for systems with only one
single degree of freedom, that only one pair p, q viz. k. Then

there exists only one single condition of integratability, namely:

He-nh)= () -

If we differentiate, then we get as a condition for the independence
of the integral (1), a partial differential equation of the first

order for k(q, t)

L . OL ok _ GL ok ML | L éky __ L, 'L ok
5+ % 5 — ok 5 —*gkoq T o oq) = drek T oW &

or oL (&k BL | OL L _

ok
TR w*‘?a;)“mra‘g Fekci T =0

(6)

i st

T A N s

“n sy B
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which is called the partial differential equation adjoined to the
variation problem. This differential equation is now,--that is the
claim--satisfied then and only then, when k(q, t) is an intermediary

integral of the Lagrange differential equation

éL. L. éL 6L

[L]c = q + 0

R ¥ FL R PY TR Pl 7)
1f namely q = k(q, t) is such an integral of {(7), that is, if

(7) is satisfied identically when one inserts for q, the general

solution

q=q(t,& ) (8)
of the differential equaticn q = k(q, t), which still contains the
constant (X , then é=%§+§fq,

q

is valid identically in t and X . If we place this in (7),
and again write k for &, then one zets a relationship which form-
ally looks exactly like the adjoined partial differential equation
(6), but at first represents an ordinary equation in t and O ,
which must be satisfied identically for all values of t and A .
If one QA with q by means of (8), then it must also be identically
true in t and q, that is, all intermediary integrals q = k(q, t)
of the Lagrange differential equation satisfy also the adjoined
partial differential equation.

If couversely, k(q, t) is a solution of the adjoined partial
&ifferenti.al equation (6) and 1f q(t) satisiies the equation

q = k(q, t), then we can insert :ffﬁ?%b-é"&/ g=i- and arrive back

R T
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with, if we again write q for k, at the Lagrange differential equa-
tion 7 and thus our law is completely proven. For several degrees
of freedom then, the law can be generalized by taking it back to
this special case.

The solutions to a variation problem, that is the curves which
satisfy the Lagrange differential equations, are usually designated
as extreme-values. With the help of a set of extreme-values of
f parameters an independence field can always be produced. 1In
order to carry this out in the most general manner, that is, to
give to each value system q1---q¢, t @ value system ky...kg, and
thus to fulfill the condition of the independency integral, one
proceeds as follows. We choose entirely arbitrarily any function
F(qy, t) which placed equal to zero, produces an f-dimensional
hypersurface in the space of 9 s t:

F(ql""'qf’ t) =0, (9
and determine next the kk for all points of the surface from the
requirement that for them, the integrand of the independency integral
L+20k (@ — Ay)

disappears. We accomplish this calculating the f values of kk from

the £ equations \ LOL (L 0L _OF ¢F  oF éF
Z' .
( ak, 3": 5";"“5"/ of’ ;91 3?: “30 )
(10

since then the integrand except for a negligible factor, becomes

equal to -+;$,;
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and thus indeed, disappears for the surface. Then from each point
of the surface, we let such a curve q = q (t) go out whose dir-
ection factors ik are there exactly equal to the just determined
kk’ and in their further course, satisfy the Lagrange differential
equations (3). This is always possible since always at a given
point with given direction for an arbitrary differential equation
of second order, such an integral curve can be found. This simply

means that we take the integral curve which stands transversal to

the surface which condition is usually identical with an orthogonality

in the ordinary sense.

Since the sufrace F = 0 itself, is f-dimensional, we have dis-
ignated an f-parameter curve set which fills the f + l-dimensional
q t-space cverywhore completely, since in general, aside from
occasional singular points, a curve goes through every space point.
The values of the kk at a random point we determine simply from
the tangent direction of the extreme value going through it and
we set, therefore,

ke = G-
This k-field according to the independency law, makes the integral
a pure place function.

the significance of the independency integral can now be
recognized as follows. We imagine to ourselves that ir ithe field
all transversal surfaces are drawn in, that is, all surfaces F =
consant, which satisfy conditions (10). The integral J , reaching

between any two points of such a surface, is obviously equal to
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gero. We now solve it further for the pa h which leads from the
starting point A of the actual motion to the end point B. Because
of the independency from the path, we can choose the latter as
appropriately as possible. We next go to the transversal surface
on which the starting point lies forewards to point C, to which
the extreme-value joins, which also goes through the end point B
and then on to this extreme-value. The first part AC gives no
sum to the integral. Fo; the second part, CB everywhere the kk = ik
and ,I are reduced to qu(qk, ak’ t)dt, since the ak = Kk (t) were
so designated that theycsatisfy the Lagrange differential equations.

J'is therefore the extreme-value of the integral of the Hamiltonian
principle between the two transversal surfaces which go through
starting point and end point. Since :r disappears for paths on
these surfaces, they are, therefore also surfaces of constant
value difference of the Hamiltonian integral between corresponding
points, i.e. points which lie on the same extreme-value. The
quantity ‘J' which for a given extreme-value field is a function
of the starting point and end point, has for many branches of mathe-
matics and physics, great importance and is usually called by the
name, characteristic function.

Naturally, there are many kinds of characteristic functionms,
since they depend on an arbitrary function, namely the starting
surface F = 0. Among all possible starting surfaces, there are
especially those which have degenerated into a point, namely the

starting point of the integration path. Also, from it one gets a
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field which covers the entire space by taking all extreme-values

which pass through it as generators of the field. The characteristic

function for a point which is reached from the starting point in

the course of the motion is thus obviously equal to the extreme-

value of the Hamiltonian integral itsell, taken over the actual

path curve.

15. Application in mechanics; t'.¢ meaning of the Hamilton-

Jacobl differential equation. For all possible characteristic

functions, a partial differential equation can be set up. From

definition (2) of No. 14 we see immediately that the derivatives

of are given b éJ oL
J are s y a=L= 25k
&
0qk 0’“ (1)

The right sides are still functions of the ks that is, of the chosen
field. From these f + 1 relationships the f values of k, can he
eliminated and there remains over then a condition between the
derivatives of :r , that is, a partial differential equation. This
elimination can be carried out directly with tl.e Legendre trans-
formation, therefore the transition to canonical coordinates. We

had set in (5) and (7), No. 2

ol ¢L
a—rl “,l

and we received from (1) by eliminating the Py

%l-;-u(g..,l =0 -
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as partial differential equation for the characteristic function.
This is however, the Hamilton-Jacobi differential equation (3) of

No. 12, Through this fundamental relationship, the signiricance

of the integral of the Hamilton-Jacobi differential equation as a

value of the Hamiltonian integral between the transversal su:faces

of the field is disclosed.

With the help of these findings, the main law of No. 12 can
be derived in a new manner. Let us suppoce that in differential
equation No. 14 (9) of the starting surface f parameters are intro-
duced so that we in all have an f-parameter set of surfaces of
which one is our initial surface. To every other surface of this
set there is likewise, an independency field determined by our
construction so that also have an f-parameter set of such fietds.
This means we take for our definition of the field, a set of inter-
mediary integrals of the Lagrange equations which contains £

integration constants b= g (g e ).

To every value system ofak‘ belongs then a characteristic function
and the totality of these characteristic functions can be summed
up in a single function J (d.g\ which depends on the f para.cters

in addition to the starting and end poiats:
Y ]
oL .
J "jl’-(% kg o0, 8). 8) +23’[,(§k - *o)}“'

With however, the derivatives according to the parameters

must become pure location functions and we get, because of
Lo oL 0h, ;
=z "Eﬂiﬁf

e R e,

B T R
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simply ; 4 3
¥4 v . ctL
é’ca] = ,2 (9e — k) Chiéa, dt.

4t (3)

The integrals on the right side disappear as we move along integral
curves since for these always C.lk = ki, that is, DJ-/f)d\l produce
functions of q and t which are constant, themselves, on the integral

curve. They must, therefore, be placed equal to constants - B 1’

é

E— —ﬂ .
o T (4)
be integrals of the Lagrange differential equations, which was to
be demonstrated.

By reversing this law, one also gets an important mechanical

theorum. If we know half of the ‘ntegral of a mechanical system,

then the other half can be found by squaring. Indeed of f functions

PG, G 6, Ny B =0 viz. wilPes g b 04, - 0) =0
are known then by solving according to &k one can find these as
functions of q, t and of the f first integration constants d,f R

hence also an f-parameter extreme-value field k=&t ).
P A
-fiemh (5)
We form, therefore, according to our assumption
dJ nz_'p.dq. — Hdt (6)
a complete differential.
According to the principle just proven, every mechanical
problem with one degree of freedom can be solved by squaring,
for example, if it poééesses the energy integral, and every problem

with two degrees of freedom when in addition to the energy integral

o VG g M

[

e

¥

W,
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one additional integral is known.

Also integral S of Hamilton-Jacobi partiil differential
equation (6) of No. 12 integrated according to time has a simple
significance for systems which do not contain time explicitly. It
is namely the extreme-value of the integral of Least action, there-
fore, the action function, and thus also of the integral of the
Jacobi principle identical with it for conservative systems. We
have, since we postulate the law of conservation of energy

M=T—-U+T+U=T—-U+a,
where o4 18 the energy constant. Consequently, according to (5)

of No. 12 B B
2|Tdt =[(T' — U)dt + ot =] + &t =S5;

i i (7)
i.e. S is retated to the principle of least action in the Jacobi
form in the same way as :Y to the Hamiltonian principie.

The concepts of this section show that the integration of a
partial differential equation of the Hamilton-Jacobi form, which
means no essential restrictionof generality, is equivalent to the
integration of the corresponding canosnical equation. This is
nothing but the Jacobi integration method of the partial differential
equations of first order and the extreme-value curves of the Hamil-
tonian principle, thus the mechanical path curves, represent the
characteristics of the partial differential equation. Indeed when
the canonical equations are solved and thus all extreme-values are
found, for every function F(qy, t) = 0 one can find a solution of

the partial differential equation which for t = t;, q = qﬁl)
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change over to F. Actually one proceeds, as indicated, conversely
bv integrating with the help of integrals of the partial differ-
ential equation (2) the Lagrange or canonical equations.

This was the starting point which Led Jacobi to his theory.
The other discoverer of these rz=lationships, Hamilton, started
from the geometricai meaning of the characte4istic function, which
to be sure, is very remarkabie. If we go from the presentation of
the characteristic function in No. 14 (description in the q t-space)
over to a construction in the f-dimensional q-space above, then we
get a system of moving characteristic function surfaces.
and in general, also extreme-values (path curves) found in flux as
their trajectories. The latter iie firmly in the case discussed
above [equation (7)] of a time-independent Hamiltonian function.
The characteristic function surfaces according to :r =8 -Wt
expand then beyond the fixed surfaces S = constant to the extent
that they always coincide with a new S-surface. The picture is
that of the emission of a series of waves as one usually thinks of
it, for example, in optical processes.

If we take the initial surface F = 0 as the excitation surface
of an optical process, the extreme-vélues are the light rays in the
sense of geometrical optics and the expanding characteristic func-

tion surfaces are surfaces of like phase, therefore a kind of

Spe e X a0t

wave surface in the sense of the Huygens principle. The principle
of least action then agrees exactly with the Fermat principle of

shortest iight jath when we assume the refraction index in the
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g-space to be proportional to the root of the kinetic energy, which
is equal tn W - U, therefore, also a pure position function. Thus
the solution of the mechanical problem is related to that of the
corresponding optical probtem. The path curves fall together with
the rays of optics. The Hamilton-Jacobi theory corresponds thus
with geometrical optics. These ideas recently have become the
basis for the further development of quanten mechanics by
Schrodingerlz which is based on the concept that from the mechanics
of atoms one does not go directly to that of wave optics, but an

extension in the sense of the actual wave must lie as the basisz).

DE. Schrodinger, Leipzig 1977.

2
)"Optik und Mechanik", von A. Lande in Bd. XX ds. Handb.






